Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations
نویسندگان
چکیده
DECAY OF A LINEAR OSCILLATOR IN A RAREFIED GAS: SPATIALLY ONE-DIMENSIONAL CASE Kazuo Aoki Kyoto University, Mechanical Engineering and Science An infinitely wide plate, subject to an external force in its normal direction obeying Hooke’s law, is placed in an infinite expanse of a rarefied gas. When the plate is displaced from its equilibrium position and released, it starts in general an oscillatory motion in its normal direction. This is the one-dimensional setting of a linear oscillator (or pendulum) considered previously for a collisionless gas and for a special Lorentz gas in our paper [T. Tsuji and K. Aoki, J. Stat. Phys. 146, 620 (2012)]. The motion decays as time proceeds because of the drag force on the plate exerted by the surrounding gas. The long-time behavior of the unsteady motion of the gas caused by the motion of the plate is investigated numerically on the basis of the BGK model of the Boltzmann equation, as well as the compressible Navier-Stokes equation (with the temperature-jump condition), with special interest in the rate of the decay of the oscillatory motion of the plate decays in proportion to an inverse power of time (power -3/2) for large time. This talk contains some results of the works in collaboration. The result provides numerical evidence that the displacement of the plate with Tetsuro Tsuji (Osaka University), Shingo Kosuge (Kyoto University, Japan), and Taiga Fujiwara (Kyoto University). A SPARSE GRID DISCONTINUOUS GALERKIN METHOD FOR HIGH-DIMENSIONAL TRANSPORT EQUATIONS Yingda Cheng Michigan State University, Department of Mathematics In this talk, we present a sparse grid discontinuous Galerkin (DG) scheme for transport equations and applied it to kinetic simulations. The method uses the weak formulations of traditional Runge-Kutta DG schemes for hyperbolic problems and is proven to be L2 stable and convergent. A major advantage of the scheme lies in its low computational and storage cost due to the employed sparse finite element approximation space. This attractive feature is explored in simulating Vlasov and Boltzmann transport equations. Good performance in accuracy and conservation is verified by numerical tests in up to four dimensions.
منابع مشابه
Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملFluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations
In some recent works [11, 12] we developed a general framework for the construction of hybrid algorithms which are able to face efficiently the multiscale nature of some hyperbolic and kinetic problems. Here, at variance with respect to the previous methods, we construct a method form-fitting to any type of finite volume or finite difference scheme for the reduced equilibrium system. Thanks to ...
متن کاملSolutions for some non-linear fractional differential equations with boundary value problems
In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators. Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems.
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملNumerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016